SPECK

Signature from Permutation Equivalence of Codes and Kernels

Rahmi El Mechri r.elmechri@staff.univpm.it

Dipartimento di Ingegneria dell'Informazione Università Politecnica delle Marche

Workshop on the mathematics of post-quantum cryptography @ UZH June $3^{\rm rd}$, 2025

Linear codes over finite fields

• A **linear code** $\mathscr{C} \in \mathbb{F}_q^n$ of length n and dimension k is a k-dimensional linear subspace of \mathbb{F}_q^n .

Linear codes over finite fields

- A **linear code** $\mathscr{C} \in \mathbb{F}_q^n$ of length n and dimension k is a k-dimensional linear subspace of \mathbb{F}_q^n .
- A **generator matrix** for $\mathscr C$ is a matrix $\mathbf G \in \mathbb F_q^{k \times n}$ whose rows form a basis for $\mathscr C$.
 - $ightharpoonup \mathscr{C} = \{ \mathbf{uG} \mid \mathbf{u} \in \mathbb{F}_q^k \}$
 - \blacktriangleright A generator matrix is in **systematic form** when it is in the form ($I_k \mid A$).
- A **parity-check matrix** for \mathscr{C} is a matrix $\mathbf{H} \in \mathbb{F}_a^{n-k \times n}$ whose rows form a basis for \mathscr{C}^{\perp} .
 - $ightharpoonup \mathscr{C} = \{ \mathbf{c} \in \mathbb{F}_q^n \mid \mathbf{c} \mathbf{H}^\top = \mathbf{0} \}$
 - ▶ A parity-check matrix is in **systematic form** when it is in the form $(-\mathbf{A}^\top \mid \mathbf{I}_{n-k})$.

The **hull** of a code $\mathscr C$ is the subspace given by the intersection of $\mathscr C$ and its dual $\mathscr C^{\perp}$:

$$\mathcal{H}(\mathscr{C})=\mathscr{C}\cap\mathscr{C}^\perp$$

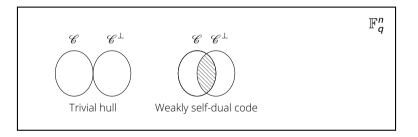
 \mathbb{F}_q^n

The **hull** of a code $\mathscr C$ is the subspace given by the intersection of $\mathscr C$ and its dual $\mathscr C^{\perp}$:

$$\mathcal{H}(\mathscr{C})=\mathscr{C}\cap\mathscr{C}^\perp$$

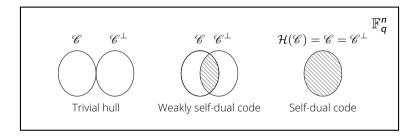
The **hull** of a code $\mathscr C$ is the subspace given by the intersection of $\mathscr C$ and its dual $\mathscr C^{\perp}$:

$$\mathcal{H}(\mathscr{C})=\mathscr{C}\cap\mathscr{C}^\perp$$



The **hull** of a code \mathscr{C} is the subspace given by the intersection of \mathscr{C} and its dual \mathscr{C}^{\perp} :

$$\mathcal{H}(\mathscr{C}) = \mathscr{C} \cap \mathscr{C}^{\perp}$$



• We consider codes endowed with the **Hamming metric**:

$$\operatorname{dist}(\mathbf{a}, \mathbf{b}) = |\{i \text{ s.t. } \mathbf{a}_i \neq \mathbf{b}_i\}|$$

• We consider codes endowed with the **Hamming metric**:

$$\operatorname{dist}(\mathbf{a}, \mathbf{b}) = |\{i \text{ s.t. } \mathbf{a}_i \neq \mathbf{b}_i\}|$$

• We are interested in **isometries**, maps preserving the hamming distance:

• We consider codes endowed with the **Hamming metric**:

$$\operatorname{dist}(\mathbf{a}, \mathbf{b}) = |\{i \text{ s.t. } \mathbf{a}_i \neq b_i\}|$$

- We are interested in **isometries**, maps preserving the hamming distance:
 - ▶ Permutations group S_n of length-n:

$$\pi\big((a_1,a_2,\ldots,a_n)\big)=\big(a_{\pi^{-1}(1)},a_{\pi^{-1}(2)},\ldots,a_{\pi^{-1}(n)}\big)$$

• We consider codes endowed with the **Hamming metric**:

$$\operatorname{dist}(\mathbf{a}, \mathbf{b}) = |\{i \text{ s.t. } \mathbf{a}_i \neq \mathbf{b}_i\}|$$

- We are interested in **isometries**, maps preserving the hamming distance:
 - **Permutations group** S_n **of length-**n:

$$\pi((a_1, a_2, \dots, a_n)) = (a_{\pi^{-1}(1)}, a_{\pi^{-1}(2)}, \dots, a_{\pi^{-1}(n)})$$

▶ Monomials group \mathcal{M}_n of length-n:

$$\mu = (\textbf{v}; \pi) \in \mathbb{F}_q^{*n} \times \mathcal{S}_n \implies \mu\big((\textbf{a}_1, \textbf{a}_2, \ldots, \textbf{a}_n)\big) = \big(\textbf{v}_1 \cdot \textbf{a}_{\pi^{-1}(1)}, \ldots, \textbf{v}_n \cdot \textbf{a}_{\pi^{-1}(n)}\big)$$

SPECK • Introduction 3 / 19

Linear Equivalence

LESS (Linear Equivalence Signature Scheme) [2] signature scheme is based on:

Linear Equivalence Problem (LEP)

Given two linear codes $\mathscr{C}, \mathscr{C}' \subseteq \mathbb{F}_q^n$, with respective generator matrices $\mathbf{G}, \mathbf{G}' \in \mathbb{F}_q^{k \times n}$, find (if it exists) a monomial matrix $\mathbf{Q} \in \mathcal{M}_n$ and a non singular $\mathbf{S} \in GL_k(\mathbb{F}_q)$ such that $\mathbf{G}' = \mathbf{SGQ}$.

Linear Equivalence

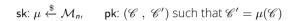
LESS (Linear Equivalence Signature Scheme) [2] signature scheme is based on:

Linear Equivalence Problem (LEP)

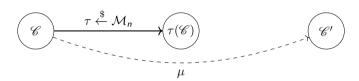
Given two linear codes $\mathscr{C}, \mathscr{C}' \subseteq \mathbb{F}_q^n$, with respective generator matrices $\mathbf{G}, \mathbf{G}' \in \mathbb{F}_q^{k \times n}$, find (if it exists) a monomial matrix $\mathbf{Q} \in \mathcal{M}_n$ and a non singular $\mathbf{S} \in GL_k(\mathbb{F}_q)$ such that $\mathbf{G}' = \mathbf{SGQ}$.

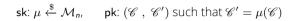
Characteristics:

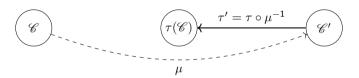
- The problem cannot be NP-complete (unless the polynomial hierarchy collapses).
- All known solvers take exponential time for average LEP if $q \geq 5$.



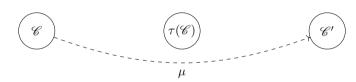
$$\mathsf{sk} \mathpunct{:} \mu \xleftarrow{\$} \mathcal{M}_{\mathsf{n}}, \qquad \mathsf{pk} \mathpunct{:} (\mathscr{C} \ , \ \mathscr{C}') \ \mathsf{such that} \ \mathscr{C}' = \mu(\mathscr{C})$$







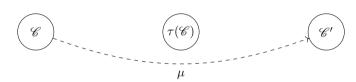
sk:
$$\mu \xleftarrow{\$} \mathcal{M}_{n}$$
, pk: $(\mathscr{C}, \mathscr{C}')$ such that $\mathscr{C}' = \mu(\mathscr{C})$



• LESS achieves very compact signatures (~ 2 KB) when **canonical forms** [3] are used:

$$CF(\mathbf{A}) = CF(\mathbf{M}_{r} \cdot \mathbf{A} \cdot \mathbf{M}_{c}), \ \forall \mathbf{M}_{r} \in M_{k}, \ \forall \mathbf{M}_{c} \in M_{n-k}$$

$$\mathsf{sk} \colon \mu \xleftarrow{\$} \mathcal{M}_{\mathsf{n}}, \qquad \mathsf{pk} \colon (\mathscr{C} \ , \ \mathscr{C}') \ \mathsf{such that} \ \mathscr{C}' = \mu(\mathscr{C})$$

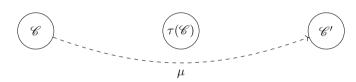


• LESS achieves very compact signatures (~ 2 KB) when **canonical forms** [3] are used:

$$\mathsf{CF}(\mathbf{A}) = \mathsf{CF}(\mathbf{M}_{\mathrm{r}} \cdot \mathbf{A} \cdot \mathbf{M}_{\mathrm{c}}), \ \ \forall \mathbf{M}_{\mathrm{r}} \in \mathit{M}_{\mathit{k}}, \ \forall \mathbf{M}_{\mathrm{c}} \in \mathit{M}_{\mathit{n-k}}$$

• Verification requires $O(n^3)$ operations (Gaussian elimination).

$$\mathsf{sk} \colon \mu \xleftarrow{\$} \mathcal{M}_{\mathsf{n}}, \qquad \mathsf{pk} \colon (\mathscr{C} \ , \ \mathscr{C}') \ \mathsf{such that} \ \mathscr{C}' = \mu(\mathscr{C})$$



• LESS achieves very compact signatures (~ 2 KB) when **canonical forms** [3] are used:

$$\mathsf{CF}(\mathbf{A}) = \mathsf{CF}(\mathbf{M}_{\mathrm{r}} \cdot \mathbf{A} \cdot \mathbf{M}_{\mathrm{c}}), \ \ \forall \mathbf{M}_{\mathrm{r}} \in \mathit{M}_{\mathit{k}}, \ \forall \mathbf{M}_{\mathrm{c}} \in \mathit{M}_{\mathit{n-k}}$$

• Verification requires $O(n^3)$ operations (Gaussian elimination). \leftarrow **Computational bottleneck!**

Can we tweak LESS in order to achieve a more efficient verification procedure?

Can we tweak **LESS** in order to achieve a more efficient verification procedure?

• Prove the knowledge of the map μ on a codeword $\mathbf{c} \in \mathbf{G}$, rather than the whole code:

$$\underbrace{\mathsf{SF}(\mu(\mathbf{G})) = \mathsf{SF}(\mathbf{G}')}_{O(n^3)} \longrightarrow \underbrace{\mu(\mathbf{c})\mathbf{H}'^{\top} = 0}_{O(n^2)}$$

Can we tweak **LESS** in order to achieve a more efficient verification procedure?

• Prove the knowledge of the map μ on a codeword $\mathbf{c} \in \mathbf{G}$, rather than the whole code:

$$\underbrace{\mathsf{SF}(\mu(\mathbf{G})) = \mathsf{SF}(\mathbf{G}')}_{O(n^3)} \longrightarrow \underbrace{\mu(\mathbf{c})\mathbf{H}'^\top = \mathbf{0}}_{O(n^2)}$$

• Forgery would mean finding a trasformation that sends \mathbf{c} into \mathscr{C}' :

Can we tweak **LESS** in order to achieve a more efficient verification procedure?

• Prove the knowledge of the map μ on a codeword $\mathbf{c} \in \mathbf{G}$, rather than the whole code:

$$\underbrace{\mathsf{SF}(\mu(\mathbf{G})) = \mathsf{SF}(\mathbf{G}')}_{O(n^3)} \longrightarrow \underbrace{\mu(\mathbf{c})\mathbf{H}'^{\top} = \mathbf{0}}_{O(n^2)}$$

- Forgery would mean finding a trasformation that sends \mathbf{c} into \mathscr{C}' :
 - ► Trivial when monomial maps are considered, just find:

$$\mathbf{c}' \in \mathscr{C}' : \mathsf{wt}(\mathbf{c}') = \mathsf{wt}(\mathbf{c})$$

Can we tweak **LESS** in order to achieve a more efficient verification procedure?

• Prove the knowledge of the map μ on a codeword $\mathbf{c} \in \mathbf{G}$, rather than the whole code:

$$\underbrace{\mathsf{SF}(\mu(\mathbf{G})) = \mathsf{SF}(\mathbf{G}')}_{O(n^3)} \longrightarrow \underbrace{\mu(\mathbf{c})\mathbf{H}'^{\top} = \mathbf{0}}_{O(n^2)}$$

- Forgery would mean finding a trasformation that sends \mathbf{c} into \mathscr{C}' :
 - ► Trivial when monomial maps are considered, just find:

$$\mathbf{c}' \in \mathscr{C}' : \mathsf{wt}(\mathbf{c}') = \mathsf{wt}(\mathbf{c})$$

► We need to rely on permutation equivalence.

The Permutation Equivalence Problem (PEP)

Permutation Equivalence Problem (PEP)

Given two linear codes $\mathscr{C}, \mathscr{C}' \subseteq \mathbb{F}_q^n$, with respective generator matrices $\mathbf{G}, \mathbf{G}' \in \mathbb{F}_q^{k \times n}$, find (if it exists) a permutation $\mathbf{P} \in S_n$ and a non singular $\mathbf{S} \in GL_k(\mathbb{F}_q)$ such that $\mathbf{G}' = \mathbf{SGP}$.

The Permutation Equivalence Problem (PEP)

Permutation Equivalence Problem (PEP)

Given two linear codes $\mathscr{C}, \mathscr{C}' \subseteq \mathbb{F}_q^n$, with respective generator matrices $\mathbf{G}, \mathbf{G}' \in \mathbb{F}_q^{k \times n}$, find (if it exists) a permutation $\mathbf{P} \in S_n$ and a non singular $\mathbf{S} \in GL_k(\mathbb{F}_q)$ such that $\mathbf{G}' = \mathbf{SGP}$.

Characteristics:

- Known solvers for PEP take polynomial time when random codes are considered [5] [1].
- Known solvers for PEP take exponential time when (weakly) self-dual codes are considered.

The Permuted Kernel Problem (PKP)

Permuted Kernel Problem (PKP)

Given a linear code $\mathscr{C} \subseteq \mathbb{F}_q^n$ with parity check matrix $\mathbf{H} \in \mathbb{F}_q^{(n-k)\times n}$ and a vector $\mathbf{c} \in \mathbb{F}_q^n$, find (if it exists) a permutation $\mathbf{P} \in \mathcal{S}_n$ such that $\mathbf{c}\mathbf{P}\mathbf{H}^\top = \mathbf{0}$.

The Permuted Kernel Problem (PKP)

Permuted Kernel Problem (PKP)

Given a linear code $\mathscr{C} \subseteq \mathbb{F}_q^n$ with parity check matrix $\mathbf{H} \in \mathbb{F}_q^{(n-k)\times n}$ and a vector $\mathbf{c} \in \mathbb{F}_q^n$, find (if it exists) a permutation $\mathbf{P} \in S_n$ such that $\mathbf{c}\mathbf{P}\mathbf{H}^\top = \mathbf{0}$.

Characteristics:

- It's a well known **NP**-Hard Problem [4].
- It allows fast verification of a given solution.

SPECK signature scheme is based on:

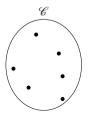
Permutation Equivalence of Codes and Kernels (PECK) Problem

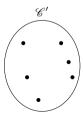
Given two permutation equivalent codes $\mathscr{C},\mathscr{C}'\subseteq\mathbb{F}_q^n$ of dimension k, having respectively generator matrix \mathbf{G} and parity-check matrix \mathbf{H}' and a random $\mathbf{u}\in\mathbb{F}_q^k$, find a permutation $\mathbf{P}\in\mathcal{S}_n$ such that $\mathbf{u}\mathbf{G}\mathbf{P}\mathbf{H}'^\top=\mathbf{0}$.

SPECK signature scheme is based on:

Permutation Equivalence of Codes and Kernels (PECK) Problem

Given two permutation equivalent codes $\mathscr{C},\mathscr{C}'\subseteq \mathbb{F}_q^n$ of dimension k, having respectively generator matrix \mathbf{G} and parity-check matrix \mathbf{H}' and a random $\mathbf{u}\in \mathbb{F}_q^k$, find a permutation $\mathbf{P}\in \mathcal{S}_n$ such that $\mathbf{u}\mathbf{G}\mathbf{P}\mathbf{H}'^\top=\mathbf{0}$.





SPECK signature scheme is based on:

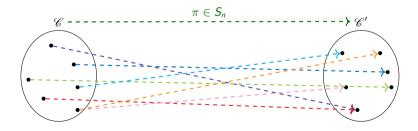
Permutation Equivalence of Codes and Kernels (PECK) Problem

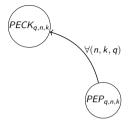
Given two permutation equivalent codes $\mathscr{C},\mathscr{C}'\subseteq\mathbb{F}_q^n$ of dimension k, having respectively generator matrix \mathbf{G} and parity-check matrix \mathbf{H}' and a random $\mathbf{u}\in\mathbb{F}_q^k$, find a permutation $\mathbf{P}\in\mathcal{S}_n$ such that $\mathbf{u}\mathbf{G}\mathbf{P}\mathbf{H}'^\top=\mathbf{0}$.

SPECK signature scheme is based on:

Permutation Equivalence of Codes and Kernels (PECK) Problem

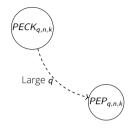
Given two permutation equivalent codes $\mathscr{C},\mathscr{C}'\subseteq\mathbb{F}_q^n$ of dimension k, having respectively generator matrix \mathbf{G} and parity-check matrix \mathbf{H}' and a random $\mathbf{u}\in\mathbb{F}_q^k$, find a permutation $\mathbf{P}\in\mathcal{S}_n$ such that $\mathbf{u}\mathbf{G}\mathbf{P}\mathbf{H}'^\top=\mathbf{0}$.





PECK is always easier than PEP

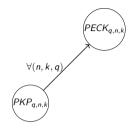
- PECK instance $\{c, G, H'\} \longrightarrow PEP$ instance $\{G, H'\}$
- Solver for PEP with input {**G**, **H**'}
- π also sends **c** to \mathscr{C}' $\stackrel{\pi}{\leftarrow}$ The solver returns $\pi \in \mathcal{S}_n$ which sends $\mathscr{C}, (\mathbf{G})$ to $\mathscr{C}'(\mathbf{H}')$



PECK is as hard as PEP when q is large

- When q >> n with high probability random codewords have no repeated values
- The unique solution for **PECK** sends the whole code to \mathscr{C}'
- PEP instance $\{G, H'\}$ $\xrightarrow{c \stackrel{\$}{\longleftarrow}}$ PECK instance $\{c, G, H'\}$

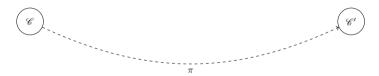
- Solver for PECK with input {c, G, H'}
- π sends sends $\mathscr{C}(\mathbf{G})$ to $\mathscr{C}'(\mathbf{H}') \xleftarrow{\pi \in \mathcal{S}_n}$ The solver returns $\pi \in \mathcal{S}_n$ which sends \mathbf{c} to $\mathscr{C}'(\mathbf{H}')$



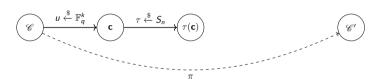
Relations with PKP

- Problem resembles PKP, which is hard to solve.
- The best ISD-solver for PKP can be adapted to PECK.

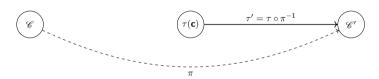
sk:
$$\pi \stackrel{\$}{\leftarrow} \mathcal{S}_{n}$$
, pk: $(\mathscr{C}, \mathscr{C}')$ such that $\mathscr{C}' = \pi(\mathscr{C})$



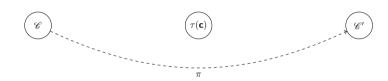
sk:
$$\pi \xleftarrow{\$} \mathcal{S}_{n}$$
, pk: $(\mathscr{C}, \mathscr{C}')$ such that $\mathscr{C}' = \pi(\mathscr{C})$



sk:
$$\pi \xleftarrow{\$} \mathcal{S}_{n}$$
, pk: $(\mathscr{C}, \mathscr{C}')$ such that $\mathscr{C}' = \pi(\mathscr{C})$



sk:
$$\pi \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i}$$
 pk: $(\mathscr{C}, \mathscr{C}')$ such that $\mathscr{C}' = \pi(\mathscr{C})$



- SPECK signature scheme obtained by applying **Fiat-Shamir transform**.
- Two regimes:

$$q = 127$$

Smaller keys and signatures
Multiple solutions

$$q = 8861$$

Larger keys and signatures
Unique solution

Rahmi El Mechri SPECK • A new protocol 11/19

Protocol specific:

• Generator matrices in systematic form: $pk = (\mathbf{A}, \mathbf{A}')$.

- Generator matrices in systematic form: $pk = (\mathbf{A}, \mathbf{A}')$.
- Encoding techniques for self-dual codes: $pk = (Triang(\mathbf{A}), Triang(\mathbf{A}'))$

- Generator matrices in systematic form: pk = (A, A').
- Encoding techniques for self-dual codes: pk = (Triang(A), Triang(A'))
- Lexicographical ordering as canonical representative: $\mathbf{x} = \mathsf{LexMin}(\mathbf{c})$.

- Generator matrices in systematic form: $pk = (\mathbf{A}, \mathbf{A}')$.
- Encoding techniques for self-dual codes: pk = (Triang(A), Triang(A'))
- Lexicographical ordering as canonical representative: $\mathbf{x} = \mathsf{LexMin}(\mathbf{c})$.
- Removing redundancy from codewords in response: $\mathbf{c}_2 = \mathbf{c}_1 \mathbf{A}^{\top}$.

- Generator matrices in systematic form: $pk = (\mathbf{A}, \mathbf{A}')$.
- Encoding techniques for self-dual codes: $pk = (Triang(\mathbf{A}), Triang(\mathbf{A}'))$
- Lexicographical ordering as canonical representative: $\mathbf{x} = \text{LexMin}(\mathbf{c})$.
- Removing redundancy from codewords in response: $\mathbf{c}_2 = \mathbf{c}_1 \mathbf{A}^{\top}$.
- Unique commitment: $cmt = Hash(cmt^{(1)}||\cdots||cmt^{(t)})$.

Protocol specific:

- Generator matrices in systematic form: $pk = (\mathbf{A}, \mathbf{A}')$.
- Encoding techniques for self-dual codes: $pk = (Triang(\mathbf{A}), Triang(\mathbf{A}'))$
- Lexicographical ordering as canonical representative: $\mathbf{x} = \mathsf{LexMin}(\mathbf{c})$.
- Removing redundancy from codewords in response: $\mathbf{c}_2 = \mathbf{c}_1 \mathbf{A}^{\top}$.
- Unique commitment: $cmt = Hash(cmt^{(1)}||\cdots||cmt^{(t)})$.

The usual:

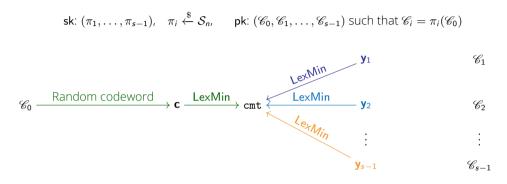
- Fixed-weight string for challenge selection.
- Puncturable PRF w/ GGM Trees.

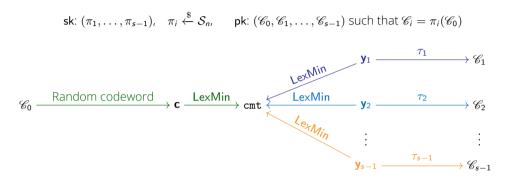
Protocol specific:

- Generator matrices in systematic form: $pk = (\mathbf{A}, \mathbf{A}')$.
- Encoding techniques for self-dual codes: $pk = (Triang(\mathbf{A}), Triang(\mathbf{A}'))$
- Lexicographical ordering as canonical representative: $\mathbf{x} = \mathsf{LexMin}(\mathbf{c})$.
- Removing redundancy from codewords in response: $\mathbf{c}_2 = \mathbf{c}_1 \mathbf{A}^{\top}$.
- Unique commitment: $cmt = Hash(cmt^{(1)}||\cdots||cmt^{(t)})$.

The usual:

- Fixed-weight string for challenge selection.
- Puncturable PRF w/ GGM Trees.
- Multiple keys can't be used!





$$\mathsf{sk} \colon (\pi_1, \dots, \pi_{s-1}), \quad \pi_i \overset{\$}{\leftarrow} \mathcal{S}_{\mathsf{n}_i} \qquad \mathsf{pk} \colon (\mathscr{C}_0, \mathscr{C}_1, \dots, \mathscr{C}_{s-1}) \text{ such that } \mathscr{C}_i = \pi_i(\mathscr{C}_0)$$

$$\mathcal{C}_0 \xrightarrow{\mathsf{Random codeword}} \mathsf{c} \xrightarrow{\mathsf{cmt}} \mathsf{cmt} \overset{\mathsf{v}_1}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_1}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_2}{\longleftarrow} \mathscr{C}_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\mathsf{v}_{s-1} \xrightarrow{\tau_{s-1}} \mathscr{C}_{s-1}$$

• Intersection between codes is not trivial with very high probability.

$$\mathsf{sk} \colon (\pi_1, \dots, \pi_{s-1}), \quad \pi_i \overset{\$}{\leftarrow} \mathcal{S}_{\mathsf{n}_i} \qquad \mathsf{pk} \colon (\mathscr{C}_0, \mathscr{C}_1, \dots, \mathscr{C}_{s-1}) \text{ such that } \mathscr{C}_i = \pi_i(\mathscr{C}_0)$$

$$\mathcal{C}_0 \xrightarrow{\mathsf{Random codeword}} \mathsf{c} \xrightarrow{\mathsf{cmt}} \mathsf{cmt} \overset{\mathsf{v}_1}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_1}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_2}{\longleftarrow} \mathsf{cmt}$$

$$\mathsf{cmt} \xrightarrow{\mathsf{v}_2} \mathsf{cmt} \overset{\mathsf{v}_1}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_2}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_3}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_4}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_4}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_5}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_6}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_7}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_8}{\longleftarrow} \mathsf{cmt} \overset{\mathsf{v}_8}{\longleftarrow}$$

- Intersection between codes is not trivial with very high probability.
- Cheat by finding $\mathbf{c}_1, \dots, \mathbf{c}_{s-1}$ such that $\operatorname{LexMin}(\mathbf{c}_i) = \operatorname{LexMin}(\mathbf{c}_i) \quad \forall i, j$

SPECK · A new protocol 13 / 19

$$\mathsf{sk} \colon (\pi_1, \dots, \pi_{s-1}), \quad \pi_i \xleftarrow{\$} \mathcal{S}_{\mathsf{n}}, \quad \mathsf{pk} \colon (\mathscr{C}_0, \mathscr{C}_1, \dots, \mathscr{C}_{s-1}) \text{ such that } \mathscr{C}_i = \pi_i(\mathscr{C}_0)$$

$$\mathsf{y}_1 \xrightarrow{\tau_1} \mathscr{C}_1$$

$$\mathscr{C}_0 \xrightarrow{\mathsf{Random codeword}} \mathsf{c} \xrightarrow{\mathsf{LexMin}} \mathsf{cmt} \xrightarrow{\mathsf{LexMin}} \mathsf{y}_2 \xrightarrow{\tau_2} \mathscr{C}_2$$

$$\mathsf{lexMin} \quad \vdots \quad \vdots$$

$$\mathsf{y}_{s-1} \xrightarrow{\tau_{s-1}} \mathscr{C}_{s-1}$$

- Intersection between codes is not trivial with very high probability.
- Cheat by finding $\mathbf{c}_1, \dots, \mathbf{c}_{s-1}$ such that $\mathsf{LexMin}(\mathbf{c}_i) = \mathsf{LexMin}(\mathbf{c}_j) \quad \forall i, j$
- Derived soundness error is closer to $\frac{1}{2}$ than to $\frac{1}{s}$.

$$\mathsf{sk} \colon (\pi_1, \dots, \pi_{s-1}), \quad \pi_i \xleftarrow{\$} \mathcal{S}_n, \quad \mathsf{pk} \colon (\mathscr{C}_0, \mathscr{C}_1, \dots, \mathscr{C}_{s-1}) \text{ such that } \mathscr{C}_i = \pi_i(\mathscr{C}_0)$$

$$\mathsf{y}_1 \xrightarrow{\tau_1} \mathscr{C}_1$$

$$\mathsf{Comparison} \mathsf{Comparison} \mathsf{Com$$

- Intersection between codes is not trivial with very high probability.
- ullet Cheat by finding $oldsymbol{c}_1,\ldots,oldsymbol{c}_{s-1}$ such that $\operatorname{LexMin}(oldsymbol{c}_i)=\operatorname{LexMin}(oldsymbol{c}_j)$ $\forall i,j$
- Derived soundness error is closer to $\frac{1}{2}$ than to $\frac{1}{s}$.
- Not worth it considering the impact on keys' sizes.

Rahmi El Mechri SPECK • A new protocol 13 / 19

$$sk : \mathbf{P} \xleftarrow{\$} \mathcal{S}_{n_{\prime}} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER VERIFIER

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER VERIFIER

Sample Seed $\stackrel{\$}{\longleftarrow} \{0,1\}^{\lambda}$

$$sk : \mathbf{P} \xleftarrow{\$} \mathcal{S}_{n_1} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed
$$\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$

Get $\mathbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed})$

$$sk : \mathbf{P} \xleftarrow{\$} \mathcal{S}_{n_1} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get $\mathbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed})$

 $\text{Compute } \mathbf{c} := \mathbf{u} \mathbf{G}$

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_{\prime}} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get $\mathbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed})$ Compute $\mathbf{c} := \mathbf{uG}$

Compute x := LexMin(c)

$$sk : \mathbf{P} \xleftarrow{\$} \mathcal{S}_{n_1} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER VERIFIER VERIFIER

 $\begin{array}{l} \text{Sample Seed} \xleftarrow{\$} \left\{0,1\right\}^{\lambda} \\ \text{Get } \mathbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed}) \\ \text{Compute } \mathbf{c} := \mathbf{uG} \\ \text{Compute } \mathbf{x} := \mathsf{LexMin}(\mathbf{c}) \end{array}$

 $\text{Set cmt} := \mathsf{Hash}(x)$

$$sk : \mathbf{P} \xleftarrow{\$} \mathcal{S}_{n_1} \quad pk: (\mathbf{A} , \mathbf{A}')$$

VERIFIER

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get $\mathbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed})$ Compute $\mathbf{c} := \mathbf{uG}$ Compute $\mathbf{x} := \mathsf{LexMin}(\mathbf{c})$

Set cmt := Hash(x)

cmt

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i}$$
 pk: $(\mathbf{A}, \mathbf{A}')$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed)

Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute $\mathbf{x} := \mathsf{LexMin}(\mathbf{c})$

Set cmt := Hash(x)

VERIFIER

cmt

Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed) Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute $\mathbf{x} := \mathsf{LexMin}(\mathbf{c})$

Set cmt := Hash(x)

VERIFIER

 $\xrightarrow{\text{cmt}}$

Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$

Rahmi El Mechri SPECK • A new protocol 14 / 19

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed) Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute $\mathbf{x} := \mathsf{LexMin}(\mathbf{c})$ Set cmt := Hash(x)

<u>, b</u>

 $\xrightarrow{\text{cmt}}$ Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$ **VERIFIER**

If b = 0:

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed) Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute x := LexMin(c)

Set cmt := Hash(x)

If b = 0:

$$\mathsf{Set}\, \mathtt{rsp} := \mathtt{Seed}$$

cmt

<u>, b</u>

Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$

Rahmi El Mechri SPECK • A new protocol

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i}$$
 pk: $(\mathbf{A}, \mathbf{A}')$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed)

Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute x := LexMin(c)

Set cmt := Hash(x)

If b = 0:

Set rsp := Seed

Else:

VERIFIER

cmt

Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed)

Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute x := LexMin(c)

Set cmt := Hash(x)

If b = 0:

Set rsp := Seed

Else:

Compute
$$\mathbf{y} := (\mathbf{y}_1, \mathbf{y}_2) = \mathbf{cP}$$

VERIFIER

cmt

Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed)

Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute x := LexMin(c)

Set cmt := Hash(x)

If b = 0.

Set rsp := Seed

Else:

Compute $\mathbf{y} := (\mathbf{y}_1, \mathbf{y}_2) = \mathbf{cP}$

Set $rsp := (y_1)$

VERIFIER

$$\xrightarrow[]{\tt cmt}$$

Sample
$$b \xleftarrow{\$} \{0,1\}$$

Rahmi El Mechri 14 / 19 SPECK · A new protocol

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed
$$\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$$
 Get $\mathbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed})$

Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute x := LexMin(c)

Set cmt := Hash(x)

If
$$b = 0$$
:

Set rsp := Seed

Else:

Compute
$$\mathbf{y} := (\mathbf{y}_1, \mathbf{y}_2) = \mathbf{cP}$$

Set $\mathbf{rsp} := (\mathbf{y}_1)$

pk:
$$(\mathbf{A} , \mathbf{A}')$$

VERIFIER

Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$

rsp

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed)

Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute x := LexMin(c)

Set cmt := Hash(x)

If b = 0:

Set rsp := Seed

Else:

Compute $\mathbf{y} := (\mathbf{y}_1, \mathbf{y}_2) = \mathbf{cP}$

Set $rsp := (y_1)$

VERIFIER

cmt

Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$

<u>, b</u>

rsp

If b = 0:

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get $\mathbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed})$

Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$

Compute $\mathbf{x} := \mathsf{LexMin}(\mathbf{c})$

 $\text{Set cmt} := \mathsf{Hash}(\mathbf{x})$

If b = 0

Set rsp := Seed

Else

Compute $\mathbf{y} := (\mathbf{y}_1, \mathbf{y}_2) = \mathbf{cP}$

Set $\mathbf{rsp} := (\mathbf{y}_1)^{\mathsf{T}}$

cmt

<u>, b</u>

rsp

If b = 0:

Get u ← PRF(Seed)

Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$

$$sk : \mathbf{P} \xleftarrow{\$} \mathcal{S}_{n_1} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed)

Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute x := LexMin(c)

Set cmt := Hash(x)

If b = 0.

Set rsp := Seed

Else:

Compute $\mathbf{y} := (\mathbf{y}_1, \mathbf{y}_2) = \mathbf{cP}$

Set $rsp := (y_1)$

VERIFIER

cmt

<u>, b</u>

Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$

rsp

If b = 0: Get u ← PRF(Seed)

Compute $c_{rsp} := uG$

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed)

Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$

Compute x := LexMin(c)

Set cmt := Hash(x)

cmt

<u>, b</u>

If b = 0.

Set rsp := Seed

Else:

Compute $\mathbf{y} := (\mathbf{y}_1, \mathbf{y}_2) = \mathbf{cP}$ Set $rsp := (y_1)$

VERIFIER

Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$

rsp

If b = 0:

Get u ← PRF(Seed) Compute $c_{rsp} := uG$

Else

$$sk : \mathbf{P} \xleftarrow{\$} \mathcal{S}_{n_1} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER VERIFIER STATES OF THE PROVER STATES OF THE PROVEN STATES OF THE

 $\begin{array}{l} \text{Sample Seed} \overset{\$}{\leftarrow} \left\{0,1\right\}^{\lambda} \\ \text{Get } \textbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed}) \\ \text{Compute } \textbf{c} := \textbf{uG} \\ \text{Compute } \textbf{x} := \mathsf{LexMin}(\textbf{c}) \\ \text{Set cmt} := \mathsf{Hash}(\textbf{x}) \end{array}$

If b = 0: Set rsp := SeedElse: Compute $y := (y_1, y_2) = cP$ Set $rsp := (y_1)$ cmt Sample $b \xleftarrow{\$} \{0,1\}$

rsp

 $\begin{array}{ll} \textbf{If } b = 0: \\ \text{Get } \textbf{u} &\leftarrow \mathsf{PRF}(\mathsf{Seed}) \\ \text{Compute } \textbf{c}_{\mathtt{rsp}} := \textbf{uG} \\ \textbf{Flse} \end{array}$

Compute $\mathbf{c_{rsp}} := (\mathbf{y}_1, -\mathbf{y}_1 * \mathbf{A'}^{\top})$

$$sk : \mathbf{P} \stackrel{\$}{\leftarrow} \mathcal{S}_{n_i} \quad pk: (\mathbf{A}, \mathbf{A}')$$

PROVER

Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get $\mathbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed})$ Compute $\mathbf{c} := \mathbf{uG}$ Compute $\mathbf{x} := \mathsf{LexMin}(\mathbf{c})$ Set $\mathsf{cmt} := \mathsf{Hash}(\mathbf{x})$

If b = 0: Set rsp := SeedElse: Compute $y := (y_1, y_2) = cP$ Set $rsp := (y_1)$ $\stackrel{\text{cmt}}{\longrightarrow} \\ \text{Sample } b \xleftarrow{\$} \{0,1\}$

rsp

If b = 0:
Get $\mathbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed})$ Compute $\mathbf{c}_{\mathsf{rsp}} := \mathbf{uG}$ Else:
Compute $\mathbf{c}_{\mathsf{rsp}} := (\mathbf{y}_1, -\mathbf{y}_1 * \mathbf{A}'^\top)$ Compute $\mathbf{x} := \mathsf{LexMin}(\mathbf{c}_{\mathsf{rsp}})$

VERIFIER

$$sk : \mathbf{P} \xleftarrow{\$} \mathcal{S}_{n_1} \quad pk: (\mathbf{A} , \mathbf{A}')$$

PROVER Sample Seed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ Get u ← PRF(Seed) Compute $\mathbf{c} := \mathbf{u}\mathbf{G}$ Compute x := LexMin(c)Set cmt := Hash(x)cmt Sample $b \stackrel{\$}{\leftarrow} \{0,1\}$ <u>, b</u> If b = 0. Set rsp := Seed Else: Compute $\mathbf{y} := (\mathbf{y}_1, \mathbf{y}_2) = \mathbf{cP}$ Set $rsp := (y_1)$ rsp If b = 0: Else:

 $\begin{array}{ll} \textbf{If } b = 0: \\ & \text{Get } \mathbf{u} \leftarrow \mathsf{PRF}(\mathsf{Seed}) \\ & \text{Compute } \mathbf{c_{rsp}} := \mathbf{uG} \\ \textbf{Else}: \\ & \text{Compute } \mathbf{c_{rsp}} := (\mathbf{y_1}, -\mathbf{y_1} * \mathbf{A'}^\top) \\ & \text{Compute } \mathbf{x} := \mathsf{LexMin}(\mathbf{c_{rsp}}) \\ & \text{Accept if } \mathsf{cmt} = \mathsf{Hash}(\mathbf{x}) \end{array}$

VERIFIER

Rsp

 $|\mathtt{Rsp}| \leq$

$$|Rsp| \le \underbrace{4\lambda}_{\substack{\text{Salt and commitment}}} +$$

$$|\mathrm{Rsp}| \leq \underbrace{\frac{4\lambda}{\mathrm{Salt}\,\mathrm{and}}}_{\substack{\mathrm{Commitment}}} + \underbrace{\frac{\lambda w \log_2(t/w) + \mathrm{wt}(t) - 1}{\mathrm{Intermediate}\,\mathrm{seeds}}} +$$

$$|\mathrm{Rsp}| \leq \underbrace{\frac{4\lambda}{\mathrm{Salt} \, \mathrm{and}}}_{\mathrm{commitment}} + \underbrace{\frac{\lambda w \log_2(t/w) + \mathrm{wt}(t) - 1}{\mathrm{Intermediate} \, \mathrm{seeds}}}_{\mathrm{Intermediate} + \underbrace{\frac{wk \log_2(q)}{\mathrm{Responses} \, \mathrm{for}}}_{\mathrm{rounds} \, \mathrm{with} \, b^{(i)} = 1}$$

Performances

Instance	KeyGen		Sign		Verify	
	ms	MCycles	ms	MCycles	ms	MCycles
Speck - Low - 133 - 60	1.20	3.11	1.48	3.89	1.45	3.79
Speck - Low - 256 - 30	1.23	3.22	2.14	5.60	2.12	5.52
Speck - Low - 512 - 23	1.16	3.03	3.53	9.21	3.50	9.14
Speck - Low - 768 - 20	1.15	2.99	4.88	12.73	4.94	12.89
Speck - Low - 4096 - 14	1.16	3.03	23.30	60.86	23.51	61.38

Table: Timings for the \mathbf{SPECK} instances in the Low q regime. Timings have been benchmarked on a 13th Gen Intel(R) Core(TM) i7-1355U and are given both as ms and MCycles, as averages of 128 runs.

SPECK vs. The World

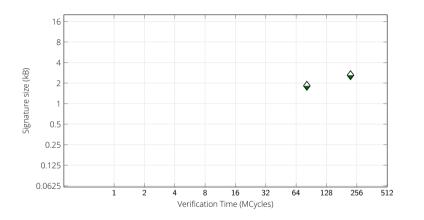


Figure: Overview of the signature size and the verification key size of round 2 NIST additional signatures based on ZK, MPCitH and VOLE-in-the-Head frameworks. Timings have been taken from https://pqsort.tii.ae/.

SPECK vs. The World

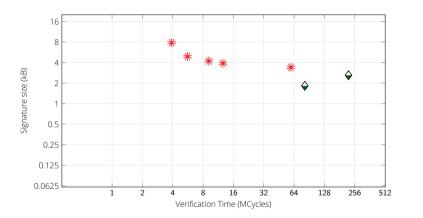


Figure: Overview of the signature size and the verification key size of round 2 NIST additional signatures based on ZK, MPCitH and VOLE-in-the-Head frameworks. Timings have been taken from https://pqsort.tii.ae/.

SPECK vs. The World

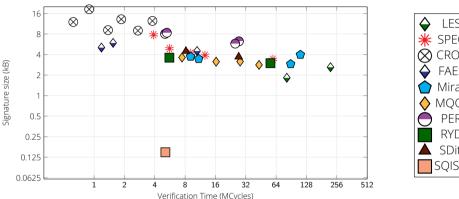
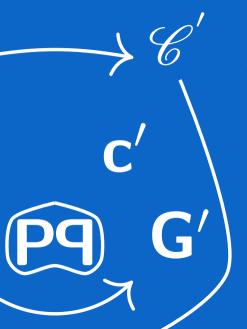


Figure: Overview of the signature size and the verification key size of round 2 NIST additional signatures based on ZK. MPCitH and VOLE-in-the-Head frameworks, Timings have been taken from https://pgsort.tii.ae/.

References

- [1] M. Bardet, A. Otmani, and M. Saeed-Taha. "Permutation code equivalence is not harder than graph isomorphism when hulls are trivial". In: 2019 IEEE International Symposium on Information Theory (ISIT). IEEE. 2019, pp. 2464–2468.
- [2] J.-F. Biasse, G. Micheli, E. Persichetti, and P. Santini. "LESS is more: code-based signatures without syndromes". In: *International Conference on Cryptology in Africa*. Springer. 2020, pp. 45–65.
- [3] T. Chou, E. Persichetti, and P. Santini. "On linear equivalence, canonical forms, and digital signatures". In: *Designs, Codes and Cryptography* (2025), pp. 1–43.
- [4] P. Santini, M. Baldi, and F. Chiaraluce. "Computational Hardness of the Permuted Kernel and Subcode Equivalence Problems". In: *IEEE Trans. Inf. Theor.* 70.3 (Mar. 2024), 2254–2270. DOI: 10.1109/TIT.2023.3323068. URL: https://doi.org/10.1109/TIT.2023.3323068.
- [5] N. Sendrier. "Finding the permutation between equivalent linear codes: The support splitting algorithm". In: *IEEE Transactions on Information Theory* 46.4 (2000), pp. 1193–1203.



Thank you for listening!

ia.cr/2025/923

